Your Name Here
Math 220
HW # 1
August 29, 2018

Exercise 1. The exclusive or, denoted by \oplus , outputs true when one, but not both, of its inputs are true. One way to write \oplus in terms of the basic symbols is

$$p \oplus q = (p \vee q) \wedge \neg (p \wedge q).$$

Use a truth table to show that $(p \land \neg q) \lor (q \land \neg p)$ is an equivalent way to write $p \oplus q$.

Proof. To show that the two are equivalent expressions with a truth table, we need to show that their columns have identical entries.

p	$\mid q \mid$	$p \lor q$	$\neg (p \land q)$	$(p \lor q) \land \neg (p \land q)$	$p \land \neg q$	$q \land \neg p$	$(p \land \neg q) \lor (q \land \neg p)$
T		T	F	F	F	F	F
T	$\mid F \mid$	T	T	T	T	F	T
	$\mid T \mid$	T	T	T	F	T	T
F	$\mid F \mid$	F	T	F	F	F	F

Since the columns for both $(p \lor q) \land \neg (p \land q)$ and $(p \land \neg q) \lor (q \land \neg p)$ are FTTF, the statements are logically equivalent, i.e., $(p \lor q) \land \neg (p \land q) \equiv (p \land \neg q) \lor (q \land \neg p)$.

Fun Math Facts

- (1) $\frac{22}{7}$ is a common fraction used to approximate the value of π .
- (2) $\frac{22}{7}$ is a bigger fraction than $\frac{22}{7}$.
- (3) The equation $e^{i\pi} + 1 = 0$ is known as the most beautiful equation in mathematics.
- (4) $\sqrt{2}$ and $\sqrt[3]{3}$ are irrational numbers.
- (5) One of DeMorgan's laws for sets is $(A \cap B)^C = A^C \cup B^C$.
- (6) $\pi \in \mathbb{R}$ but $\pi \notin \mathbb{Q}$.
- (7) A function, f, from a set A to a set B is denoted by $f: A \to B$.
- (8) A really interesting sum is $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Math 220 - Discrete Mathematics

Homework 1 - Due Friday, September 7th

For this assignment, your goal is to replicate the reverse side of this page. You will need to turn in two things: hand in a printout of the compiled pdf (with "Your Name Here" replaced with your name) and submit on Canvas the .tex file with your code. This is (likely) the only assignment where I will require you to submit your .tex file.